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We have implemented barriers to thermally activated hopping in stochastic solid-on-solid growth
simulations on one-dimensional substrates, emphasizing the extreme special cases of zero and infinite
barriers to downward (i.e., towards the substrate) and upward (i.e., away from the substrate) diffu-
sion for a range of temperatures. At a single temperature, we also introduced various finite, nonzero
energy barriers to downward atomic hopping in order to systematically study nonequilibrium effects
of a diffusion barrier. Our results indicate that within the solid-on-solid restriction generic growth
stability is likely in molecular-beam epitaxy unless a sufficiently large diffusion barrier to downward
hopping exists in concert with upward atomic mobility. Our results also demonstrate the difficulty of
experimentally extracting dynamical growth exponents due to transient and crossover effects which

dominate the kinetics of epitaxy.

PACS number(s): 05.40.+j, 68.55.Bd, 82.20.Mj

A clear and unified theoretical understanding of the
physics of growing interfaces evolving under nonequilib-
rium kinetic growth conditions remains elusive despite
the emergence of the dynamical scaling hypothesis and
coarse-grained stochastic continuum equations as tools.
It was postulated [1] that growing surfaces could be
viewed as self-affine fractals with the property of statis-
tical scale invariance. Root mean square surface height
fluctuations, w(t, L), therefore should show a power law
dependence on the growth time (¢) and lateral system
size (L). Considerable work [2-8] has been devoted to
developing generalized Langevin-type dynamical differ-
ential equations to describe the asymptotic growth char-
acteristics. The simplest case had been pioneered by
Edwards and Wilkinson (EW) [2], who studied growth
under sedimentation by letting the randomly deposited
atoms relax to local height minima. Several early nu-
merical stochastic growth models verified their quantita-
tive results [9-11], namely that w(¢,L) ~ tP (t << L?)
and w(t,L) ~ L* (t >> L*) [where w(t, L) is the sur-
face width, w(t,L) = ((h(&,t) — h(t))?)Y/2, with h(t)
being the average surface height and (- - -) indicates both
a spatial and a statistical average] with 8 =~ 1/4(log)
and a = 1/2(log) for d' = 1(2) substrate dimension(s),
and the dynamical exponent z = a/3. The EW equa-
tion [Eq. (1) below] can be verified by Fourier transform
methods to show this scaling behavior. The EW equation
is

Oh(Z,t)

52 v V2h(Z,t) + n(Z,t), (1)

where h(Z,t) is the local dynamical height at substrate
position £ and 7 represents a random, uncorrelated white
noise associated with the incident flux of particles. It
has been shown that, in addition to the gravitational
forces involved in sedimentation, desorption of atoms
from growth fronts also leads to EW-type universality
[7]. In general, the Laplacian term in the EW equation
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(with v > 0) describes the smoothening of the growing
surface due to surface tension forces, and is often present
in dynamical growth. The case of v < 0, i.e., a negative
surface tension term, should, in general, lead to instabil-
ity without any dynamic scaling behavior [7,12].

For a process like semiconductor crystal growth via
molecular-beam epitaxy (MBE) where neither gravita-
tion nor desorption is quantitatively important, it is not
manifestly obvious that the EW paradigm applies. In
MBE, surface diffusion in a strong chemical bonding en-
vironment is the dominant relaxation process. It is not
the physics of sedimentation which describes the interface
dynamics in MBE growth, but a general attraction of sur-
face atoms towards a substrate where particles achieve a
maximal number of bonds. This is viewed as a statistical
migration towards the substrate, whereby atoms sam-
ple numerous surface sites, staying longest in locations
with high coordination. In this paper, we use the term
“downward” diffusion to mean interlayer atomic mobility
towards the substrate whereas “upward” diffusion means
interlayer atomic mobility away from the substrate and
“lateral” diffusion implies intralayer atomic diffusion.

Dynamical growth [13] simulations involving diffusion
toward tightly bonded surface kink and trapping sites in
general do not agree with the simple EW results [3,4,6],
although the issue is by no means clearly resolved yet
[14,15]. While a scaling hypothesis remains valid in such
kink-diffusion simulations, the growth exponents numer-
ically obtained via w(t, L) increase to B.fs = 0.371 and
aefs =~ 1.32 [4] in (1 + 1)-dimensions. Rather than the
second-order Eq. (1), these exponents are reasonably con-
sistent with the fourth order equation

Oh(,t)

o = ~naVA(Vh(Z,1)) +n(Z,1), (2)

which has been rationalized as the lowest order expan-
sion for surface diffusion driven by a local chemical po-
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tential gradient [16]. Given the nonequilibrium nature
of this problem, it is, however, not clear that we can
invoke a chemical potential gradient which drives sur-
face diffusion. Based on simulational evidence [3,6,17],
one associates the V2(V2h) term with diffusion to sites
of increased coordination. Crossover effects associated
with these discrete dynamical growth simulation mod-
els [15,18] are not completely understood at the present
time. It should be emphasized, however, that Eq. (2) and
the associated kink-diffusion discrete dynamical simula-
tions have recently been shown to exhibit anomalous dy-
namical scaling behavior, which is the subject of several
recent publications [12,14,15,19,20]. While the anoma-
lous dynamic scaling of the fourth-order linear differential
equation, Eq. (2), itself is trivially understood [19,20], the
nature of dynamic scaling in the corresponding discrete
dynamical growth models [3,6,18] has remained unsettled
and is currently a subject of vigorous theoretical activity
[14,15,21].

Both Egs. (1) and (2) describe conservative growth
(i.e., the crystal volume equals the total volume of parti-
cles deposited so that no desorption occurs and no holes
or overhangs exist), which in general must obey the equa-

tion % = -V. j + n, where 7 is the surface current
of atoms. Actual MBE growth involves very few de-

fects (as evidenced by layer-by-layer oscillations seen, for
example, by reflection high-energy electron diffraction),
leading to the extensive use of conservative solid-on-solid
(SOS) growth models in its study. To the order of Eq. (2),
an equation containing all linear and nonlinear conserva-
tive terms consistent with the symmetries of the problem
reads as [4,5,22]

Q’-‘%’ﬂ = 1, V2h(E,t) — vaV2(V2h) + Az V2(Vh)?
+243V(Vh)3 + (7, ). (3)

The v, (or EW) term, when present, always controls
the asymptotic scaling behavior, and when v, = 0, the
A43(v4) term is the most (least) relevant in a dynamical
renormalization group sense [5]. No atomistic process
leading specifically to the A43 term has yet been identi-
fied, but the migration of atoms from kink sites (both up-
wards and downwards) in various models has been shown
to produce the nonlinear term V2(Vh)? [5,7,17]. One ex-
pects [5,22] the A43 term to show up as a higher order cor-
rection to the EW v, term on dimensional grounds—this
has recently been verified in some dynamical simulations
[14,18]. For real MBE, many physical processes may be
active at the microscopic level, and their collective effect
on the scaling properties of surfaces is the motivation
for our study. All our results are in the physically less
relevant 1+ 1 dimensions (i.e., (d' = 1)-dimensional sub-
strates) where large simulations can be carried out; the
corresponding simulations in the realistic (2 + 1) dimen-
sions are computationally prohibitive at the present time.

Several groups have recently analyzed simulations us-
ing thermally activated atomic hopping [3,4,17], intro-
ducing new length (“diffusion length”) and time scales
(“hopping time”) into the problem. Das Sarma and Tam-
borenea [3] looked at a model without upward hopping,

finding an effective exponent which generally decreased
with increasing temperature (or equivalently, increasing
diffusion length) but showed a short plateau near 3 = 3/8
corresponding to the dynamic scaling implied by Eq. (2).
They also give evidence [4] that the decrease in 3 at high
temperatures is a finite size effect which obscures any
EW-type universality which may be present at higher
temperatures. In a similar model (but with upward hop-
ping allowed), Wilby et al. [17] showed results at two
temperatures: they observed the v, term at both tem-
peratures, but the nonlinear \4; term became effective
at very long times at the higher temperature. The ob-
servation of EW scaling in the former model was indi-
rectly inferred [4] by analogy with a related dynamical
model with an adjustable diffusion length, while a proper
choice of T' (to minimize finite time and/or size effects)
resulted in the appearance of the A4 term in the later.
These stochastic MBE growth studies strikingly demon-
strate the grave difficulties in extracting growth expo-
nents from experimental MBE studies. Even in the sim-
plest ideal MBE growth model, finite size and crossover
effects are so intrinsically intertwined with the dynamical
scaling behavior that it may be impossible to infer the
true asymptotic growth exponents [23]. Indeed, the ex-
perimental observations of growth, while showing scaling
in general, have not converged to any consensus about
the values of the growth exponents, with B.¢; varying
from ~ 0.2 [24] all the way to ~ 1.0 [25], and a.ss has
been measured from 0.47+0.02 [26] to 0.79+0.05 [27] [all
in (2 + 1)-dimensional studies]. Herein, we will attempt
to indicate why one might unavoidably observe various
values of fB.ss for real growth within a simple (1 + 1)-
dimensional ideal stochastic MBE growth model where
diffusion is driven by activated hopping.

Our growth simulations occur on a (d = 2)-dimensional
square lattice from a flat one-dimensional substrate, with
a lateral substrate size L = 4000-10000 lattice sites. Par-
ticles land randomly on the surface at a rate of Rgep = 1
layer/sec, incrementing the height above a randomly se-
lected substrate site by one unit. In addition, any surface
atom may undergo a hopping event, modeled as a ther-
mally activated process with a site dependent activation
energy, E,(n), where n = n(Z,t) is the number of oc-
cupied nearest neighbors of the site at Z at the time of
hopping, t. We use an Arrhenius form for calculating
the hopping rates: R, = E%T— exp[—FEq4(n)/ksT]. We
take E,(n) = Eq¢ + Epn, where Eq = 1.0eV models a
general affinity of atoms for the surface, and the bond
energy Ey = 0.3eV. Atoms with n = 1,2, or 3 may hop,
provided that no deviations from an SOS crystal occur
(i-e., voids, overhangs, defects are not allowed). Evapo-
ration is neglected throughout. Note that the choice of
activation energies automatically determines the inter-
esting temperature window for the growth problem, and
our parameters are chosen to be qualitatively consistent
with semiconductor MBE growth.

Temperatures range from T' = 450 K when R; < Ry,
to T = 675 K, where Ry >> Rgep, Rz > Rgep, and
R3 ~ 0.1 Rdep- At T =~ 510 K R; = Rdep’ thus our
temperature range covers the whole crossover regime.
The growth temperature, by determining the hopping
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rates, controls the crossover time scale in an exponential
manner—in particular, it is well known [3,4] that at the
lowest temperatures, T < 450K in this work, Bess ~ 1/2
corresponding to random deposition because the time
scale for any activated diffusion to occur is exponentially
long. The landing site of a hopping particle is chosen ran-
domly from among the eligible nearest neighbor columuns,
with constraints on the change in height as noted below.
If there is no final configuration dependence in the hop-
ping rate, the Arrhenius form for the rates assures that
the local detailed balance condition is obeyed.

Our Monte Carlo implementation allows a variable de-
gree of coarseness in executing the hopping depending
on how frequently searches for eligible atoms occur. This

is accomplished by letting a fraction '—nl—" of the eligible,

appropriately bonded particles to hop after ;—n% sec-

onds. Being interested in the early transient behavior,
we chose m,, to search for potential hops after every de-
position event for n = 1,2, and an order of magnitude
(or more) less frequently for triply bonded atoms. To
avoid systematic errors, adjustments in m, were made
with changes in L. This technique resulted in excellent
resolution of the early time behavior over the full range
of temperatures.

We have looked at four distinct SOS models with this
method, abbreviated as UD, NU, ND, and LAT, distin-
guished by the set of allowed landing sites for diffusing
atoms. Most generally, lateral (in-plane), upward and
downward hops occurred (abbreviated as the UD model),
with all energy barriers calculated using the same energy
parameters Ey and E, as quoted above. The NU model
imposes an infinite barrier to upward hopping, with in-
plane and downward hopping being unaffected, while the
unphysical ND model instead permits only upward and
lateral hops, giving an infinite barrier to downward dif-
fusion. Finally, we permit only lateral hops in the LAT
model. The LAT and ND models are interesting only as
extremes, being limiting cases of nonequilibrium growth
including a diffusion barrier, whereby particles experi-
ence an extra additive barrier, E,, to diffusing down at a
step edge [28]. The size of the diffusion barrier is gener-
ally not known for semiconductors, but our ND and LAT
models extremely overemphasize the effect. We point
out that our UD model obeys the detailed balance con-
dition whereas the other three models (i.e., NU, ND, and
LAT) are manifestly nonequilibrium in that they violate
the principle of detailed balance because the hopping is
dependent upon the final configuration. Thus the UD
model is really the only physically allowed model even
though the NU model is also a reasonable description of
MBE growth at temperatures which are not too high.
There are ways [29] of incorporating a diffusion barrier
in MBE growth simulations explicitly obeying the prin-
ciple of detailed balance, but one must either relax the
simplicity of a nearest-neighbor interaction model used in
our work or introduce by hand a final-state dependence
into the hopping rates in such a way as to restore detailed
balance. Our interest in this paper being on a qualitative
and fundamental understanding of the trends associated
with various nonequilibrium effects, the simplistic model-

ing employed in the NU, ND, and LAT models is sensible
provided we do not make explicit comparison with exper-
imental results (except for the UD model).

To get a feel for how drastically temperature influences
the surface morphology, we present in Fig. 1 the surface
height profiles for T' = 500,600, and 650 K after growth
times of 100, 500, and 2000 layers in the UD and NU mod-
els for L = 4000. Note the change in vertical scale used
due to the large disparity in the surface width as the tem-
perature changes, and that the average height has been
shifted in each case for clarity. At T = 500 K [Figs. 1(a)
and 1(b)], the up-hopping has no gross visible effect and
the NU and UD models look very similar. One can see the
very random, noiselike quality at ¢ = 100 begin to look
more correlated on this substrate length scale after 2000
layers, reflecting the slow rate of hopping. In both mod-
els, as T rises, the height fluctuations become more sub-
dued, and one sees small scale structures at early times
coalesce into large features as growth proceeds. The UD
and NU models evolve differently with temperature once
the hopping rate exceeds the deposition rate, and one
observes a considerably smoother surface in the NU case
at T = 650 K [Fig. 1(f)], with few of the large steps that
are readily apparent at all temperatures and times in the
UD model. We have not presented morphologies for the
LAT or ND models, but in general they (the ND model
especially) exhibit a more spiked appearance than even
the T = 500 K cases shown here and are unphysically
rough.

To study the scaling properties of these models, we
monitored the surface width as a function of time, from
which .7y was extracted as the slope of a log-log plot
of w(t). Consider first the UD model, where up- and
down-hopping occur. At very early times and at all tem-
peratures random, uncorrelated growth with B.z5 = 1/2
was seen while at late times (~ 2000 layers) B.;; has de-
creased to x 0.35 with a slight temperature dependence,
shown as triangles in Fig. 2(a). Interestingly, the change
in B.s¢ with time did not occur monotonically: before at-
taining the long time value, an intermediate time regime
(~ 1-20 layers) occurred for T > 550K with a lower
value of B.ss and a more pronounced temperature de-
pendence. Because we permit hopping continuously in
our simulation, this slope can be measured accurately.

The more frequently studied situation corresponds to
the NU model, with all diffusion being either downward
or parallel to the original substrate. The Bss versus
T plot [Fig. 2(b)] shows deviations from the UD model
of Fig. 2(a) for T > 550K [R; =~ 14Rg4.p and R; =~
(1/40)R4cp). Instead of a large plateau at G55 =~ 0.35,
the exponent now displays a clear decreasing trend with
no indications of a plateau. For all values of T (and
all times), ﬂg}} < EI}, in keeping with our intuition
that up-hopping should lead to relatively more roughened
growth. We emphasize that the unrestricted, strong up-
ward hopping in the UD model has not made the growing
surface unstable, however, and (.55 never exceeds 0.5.

In both the UD and NU models for temperatures where
the hopping rate R; is comparable to or greater than
the deposition rate, B.¢s initially falls below its asymp-
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FIG. 1. Morphologies for t = 100, 500, and
2000 layers in the UD and NU models for
a system size of L = 4000 at T = 500 K
[(a) and (b)], T = 600 K [(c) and (d)], and
T = 650 K [(e) and (f)]. Figures (a), (c), and
(e) are snapshots of the UD model, and the
NU model is shown in Figs. (b), (d), and (f).
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totic value (ﬂ:f 7, measured at the latest accessible times
t > 100) early in the growth (83¢;;, measured for ¢ < 20
layers) so that 8, < B¢;;. It is, in principle, possible for
B2ss to be somewhat lowered by saturation effects which
have not yet manifestly appeared, but we have taken care
to avoid such effects. The early exponent 3, is obvi-
ously affected by finite time effects. When up-hopping
occurs, the difference in these values, A = (,3:;f 5= Bes )
increases with temperature, whereas forbidding up-hops
leads to a smaller, positive AB that seems to saturate
beyond T = 600 K. The physical process causing the ini-
tially small value of the slope thus appears to be general,
occurring in any stable model possessing thermally acti-
vated hopping, and not an artifact of strong upward mo-
bility. Upward hopping enhances the difference in feyy
between the early and late growth, but is not essential to
the existence of that difference.

Why should there be a positive A3, rather than a sim-
ple monotonic crossover to 3Z;; from the Besy = 1/2
random regime? In most previous numerical studies of
conservative dynamical growth models [1,3,6,9,10], this
transition indeed appears monotonic: in finite-T Monte
Carlo simulations or stochastic models where variable dif-
fusion lengths are permitted as a function of temperature
a positive AS emerges [3,4,17]. Nonmonotonic B.gs is
also fairly common in the ballistic deposition and Eden
models which belong to the Kardar-Parisi-Zhang univer-
sality [8] and are manifestly non-SOS in nature [30,31].
We know of a only single instance within a dynami-
cal SOS model where a nonmonotonic B¢ can be seen
([31], see Fig. 3 therein), where increasing the diffusion
length leads to layer-by-layer growth oscillations and con-
sequently a nonmonotonic Befys.

Therefore, this initial drop in slope appears to result
from the introduction of a new length scale in the prob-
lem, namely the diffusion length ! [23], measuring the
distance a surface particle can travel before its eventual
incorporation into the bulk. Since the surface starts out
flat, at early times incident particles (typically with only
a single bond) initially can explore long distances be-

fore encountering highly coordinated sites required for
their incorporation. At later times the growing surface
is kinetically rough providing numerous nearby “active”
sites where the freshly incident atoms may become in-
corporated, so that all surface diffusion takes place over
shorter length scales. Consequently, for T > 550 K, as
height fluctuations on the order of unity begin to develop
after a certain time (¢ ~ 20 layers, on average) the in-
cident particles are incorporated into the growing film
within a shortened distance and Bess experiences an in-
crease over 3¢ Thus the diffusion length becomes a
dynamical function of the evolving surface morphology.
We believe that the finite value of AS is a direct mani-
festation of layer-by-layer growth oscillations attempting
to emerge at the early stages of MBE in this parame-
ter range. In general, layer-by-layer growth oscillations
are more pronounced in (2 + 1)-dimensional stochastic
simulations [32] than in one-dimensional MBE growth.
An interesting difference in (g;; between the NU and
UD models is that the UD model produces a much more
stable value (near ~ 0.35) over a broad range of tempera-
ture where R;/Rg.p goes from ~ 0.8 to = 2700, whereas
Bess drops from =~ 0.39 to ~ 0.20 over the same tem-
perature range in the NU model. That an overemphasis
of the destabilizing effect of upward hopping (which in
real MBE growth may be rare) should yield a nearly un-
changing Z;; is curious. But in light of the fact that our
simulation allows a particle to diffuse to reach a nearby
energy minima, where hopping rates are exponentially
lower, it is reasonable that 3¢;; ~ 3/8 for the UD model,
corresponding to Eq. (2). Previous stochastic simula-
tions [3,4,17] using only downward and lateral diffusion
to energy minima also show this slope. In this sense, sur-
prisingly, up-hopping does not seem to alter the physics
embodied in Eq. (2), and actually it may better man-
ifest such behavior by minimizing the obscuring effects
of the long diffusion length which may be causing the
high temperature decrease of Bgff in the NU case. We
should mention, however, that our measured G5 =~ 0.35
for the UD model is consistent (within numerical errors)
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with the nonlinear Lai-Das Sarma-Villain (LDV) equa-
tion [Eq. (3) with v, = Ay3 = 0] which in 1 + 1 dimen-
sions has 8 = 1/3 [5]. A dynamical simulation [5] which
manifested this universality class allowed doubly bonded
atoms to hop up or down provided that the number of
bonds did not decrease: our stochastic models also in-
clude such processes, and there is always the possibility
that some nonlinear effects may be present in our mod-
els particularly because the nonlinear V?(Vh)? term is
more relevant in a renormalization group sense than the
linear V4h term. Without measuring some other growth
exponent, we cannot distinguish between the linear and
nonlinear fourth order equations just based on our mea-
surement of ﬂffl} = 0.35.

To make any identification with a continuum equa-
tion, an estimate of a, for example, is needed. Typ-
ical methods for obtaining c.ss are to plot the satu-
ration width versus system size or to study the short
distance behavior of the surface height-height correla-
tion function (for anomalous dynamical scaling these two
studies produce different exponents because the local
and global scaling behaviors are different [14,15]). Here
we have monitored the mean square surface gradient,
G(t,L) = ((VRh)?) = ((h(z + 1,t) — h(z,t))?) where the
average is over the substrate coordinate z. Within the
standard dynamic scaling hypothesis [1], for any univer-
sality class with @ < 1, which for (1+1)-dimensional SOS
models corresponds only to the EW case (oo = 1/2) or the
less relevant Ag3 # 0 situation (a = 3/4), the quantity G
will quickly saturate to a constant. This behavior is dif-
ferentiated from the cases of @ = 1 (A4 term is the most
relevant) where G ~ log(t), and o = 1.5 [Eq. (2)] for
which G ~ t'/4 [33]. The quantity G manifests power law
time dependence in all models (both discrete and contin-
uous) showing anomalous dynamic scaling whereas in the
usual dynamic scaling, where local and global scaling be-
haviors are not differentiated, G(t) typically saturates at
very short times unless a > 1. We emphasize that o > 1
corresponds to anomalous dynamic scaling [15], and G
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grows with time as a power law with a larger anoma-
lous exponent (0.40) in the intermediate time scales than
would be predicted by the analytic anomalous scaling be-
havior (0.25) for Eq. (2) [15]. Note that our definition of
G coincides with the mean square step size C(1,t) which
is just the z = 1 value of the height-height correlation
function C(z,t) [14,15]. If the dynamic scaling behavior
is anomalous [14,15], then w and G invariably lead to
different effective exponents independent of whether « is
greater than or less than 1. In this paper, we measure
aess by studying G = ((Vh)?) (i.e., the local aess) which
coincides with the a.fs measured from w(t, L) studies
(i.e., the global asys) only if the standard dynamic scal-
ing hypothesis applies.

We attempted to obtain rough qualitative values of
aczs by looking at G versus t on a log-log plot: in the
NU case [Fig. 3(b)], the high-temperature fate of G is sat-
uration consistent with the usual scaling behavior, while
for the UD model [Fig. 3(a)] G is still increasing even
for T = 675 K, clearly showing that the UD model scales
anomalously [15] in that such an increase of G requires
the globally measured a.ss to exceed unity. The satu-
ration of G (implying @ < 1) in the NU model points
to Eq. (1) as being the best description of its interface
(there may well be a small A43 term in addition to the
most relevant v, term as a higher order effect). Thus
we speculate that the NU model belongs to the EW uni-
versality class even though a naive study of B.s; does
not necessarily lead to this conclusion due to the com-
peting finite size effects which are invariably present [4].
Our speculative identification of the NU model at high
T with EW growth is thus based on indirect evidence.
At this stage, we cannot conclude whether at low T in
the NU model we observe anomalous scaling behavior
[such as given by Eq. (2)] or simply a smooth crossover
with temperature from purely random low temperature
growth to the high temperature EW growth (although
other simulations [3,4,17] also find Bess near 3/8 when
R, = Rgep). A crossover in the scaling behavior with
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temperature would be interesting, but is extremely diffi-
cult to pin down due to competition from finite size and
time effects.

It is more difficult to distinguish the anomalous dy-
namic scaling of the « = 1 and o = 1.5 situations due
to the slippery nature of the clearly identifying loga-
rithmic behavior and possible problems arising from un-
known features in anomalous dynamic scaling. However,
Fig. 3(a) shows that the slope of G drops only to 0.1 at
T = 675K and L = 10? for the UD model, so that at
least below this temperature, the A4 term does not ap-
pear to be dominant. But neither does Fig. 3(a) show a
constant slope of G(t) equal to 1/4 to be consistent with
the scaling behavior of Eq. (2) which may be expected
because of the stable value (~ 0.35) of 3¢;; observed
in Fig. 2(a): indeed for T = 550K, G ~ t%%!. One
may retain some measure of reconciliation with the con-
cept of kinetic super roughening proposed by Das Sarma,
Ghaisas, and Kim [15] which predicts that G(t) scales
anomalously as G ~ t%/1° in the discrete DasSarma—
Tamborenea dynamical growth model [3,4] (also called
the 1+ model in Ref. [18]). It is now known [14,15]
that while the global behavior of this model seems to
be controlled by Eq. (2), its anomalous scaling behav-
ior is very different from that of Eq. (2) which predicts
G(t) ~ t'/%. This quantitative agreement between the
Das Sarma—Tamborenea model and our simulations only
in the neighborhood of T' = 550 K may not possess any
unique significance. Nevertheless, because of the observa-
tion of a stable 3Z; ; close to that of the fourth order linear
continuum equation at that temperature (T' = 550 K),
we are inclined to believe that the UD model (as opposed
to the NU model) is displaying anomalous scaling behav-
ior consistent with the DasSarma-Tamborenea 1+ (or
the Wolf-Villain d2+) model for T > 500 K, albeit with
a strong temperature dependence of the effective expo-
nent aess. For temperatures greater than those studied
here Fig. 3(a) indicates that G(t) may eventually satu-
rate, in which case any scaling behavior would be of the
standard type. Thus the understanding of the continuum
equation controlling MBE growth may be intimately tied
to our understanding of the continuum equation describ-
ing the dynamical Das Sarma—Tamborenea model [3], at
least over intermediate time scales. The fact that G(t)
may eventually saturate may very well be a finite size ef-
fect or may indicate a crossover to EW universality (as in
the Wolf-Villain dynamical model [6]). This point clearly
needs further investigation [34,35].

To obtain a more conclusive determination of the scal-
ing in the UD and NU models, we have measured the full
correlation function C(z,t) = ((h(z+r,t)—h(z,t))?) and
extracted from it the correlation length, £, as a function
of time. Our operational definition of ¢ is the length
at which C(z,¢) first saturates. In Fig. 4, this data is
presented for T = 500,600, and 650 K. In general, the
scaling law £ ~ t1/# where z is the dynamical exponent,
holds extremely well over more than two decades in time.
The main observation is that the slope of these log(¢)-
log(t) plots in the UD model changes slowly, from 0.21 to
0.29, over a range of 150 K: on the other hand, the calcu-
lated slope in the NU model deviates sharply from its low
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FIG. 4. Plot of the dynamical correlation length versus
time for the UD (open symbols) and NU (filled symbols) mod-
els at T = 500(A), 600(Q), and 650 K (0O). The best fit lines
have the following slopes: T = 500 K (UD): 0.21 + 0.01,
T = 500 K (NU): 0.22 £ 0.01, T = 600 K (UD): 0.26 % 0.02,
T = 600 K (NU): 0.41 4 0.01, T = 650 K (UD): 0.29 + 0.02,
T = 650 K (NU): 0.43 + 0.05.

temperature value of 0.22, becoming 0.43 at T' = 650 K.
If we identify this slope with 1/z, i.e., £ ~ t'/%  which is
expected to hold even in the anomalous dynamic scaling
case [15], we can obtain the dynamical exponent z. It
is interesting to note that for Eq. (2) z = 4, close to all
slopes in Fig. 4 for the UD model (open symbols) and the
low-T' behavior of the NU model. Furthermore, Eq. (1)
has z = 2: the correlation function behavior thus also
supports the claim that due to crossover effects the NU
model (filled symbols) changes its effective universality
for ¢ < 2000 from that of Eq. (2) to that of Eq. (1) at high
temperatures. On the other hand, in the UD model 1/z
changes from 0.21 (low T) to 0.29 (high T') which is con-
sistent with, but not absolutely conclusive evidence for,
the scenario that the low-T behavior of the UD model is
given by the linear diffusion equation [Eq. (2)] and the
high-T behavior by the nonlinear LDV equation, possess-
ing the V2(Vh)? term, which has z = 3.

Thus, the NU model, after producing a global Feyy
close to that predicted by the universality of Eq. (2) when
R1/Rgep is close to unity, appears to be asymptotically
governed by Eq. (1) as activated diffusion gets stronger
at higher temperature. When upward hopping is added
there is evidence [Fig. 2(a) and Fig. 4] for Eq. (2) (or the
nonlinear LDV equation) holding over a much broader
range of temperature, with the possibility that the uni-
versality class might change for hopping rates higher than
those studied here. Also, note that while a.ss does con-
tinuously decrease with 7', we can observe (Fig. 3) slight
positive curvature at late times (¢ ~ 10%) suggesting that
G does not saturate just beyond the end of our UD sim-
ulation. In contrast, the NU model possesses a G(t)
which either saturates or shows a negative curvature. It
would be interesting to consider the manner in which the
UD model becomes the NU model as the facility of up-
hopping is reduced in light of the potentially different
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scaling laws they follow in the intermediate temperature
regime we have investigated.

To quantify the strength of upward hopping in our UD
model, we present in Fig. 5(a) the fraction of out-of-plane
hops which decrease the height as functions of both time
and temperature. The percentage of downward hops re-
mains nearly constant in time although a slight decrease
at long times can be seen. Upward hopping, caused by
the migration from kink and trapping sites, does not ac-
count for more than 10% of all the out-of-plane hops until
T =~ 600K, but by T = 675K up-hops and down-hops
are almost equally likely. A positive, nonzero difference
in the absolute number of down-hops and up-hops (per
layer), A, indicates that hopping on the whole acts to
transport atoms towards the substrate: Fig. 5(b) replots
the data of Fig. 5(a) to measure this difference. Note
that A eventually saturates, but requires on the order of
10 layers to do so: this may be related to the early low
value of Bess. The value of A(T,t) also appears to sat-
urate to a positive value with increasing temperature as
the up-hopping fraction goes to 1/2. This demonstrates
a definite bias in favor of hopping towards the substrate
even when up- and down-hopping are kinetically equiv-
alent as A(T,t) > 0. It is tempting to make a connec-
tion between a nonzero A and a nonzero vz, the driving
force in EW growth resulting from forcing atoms to relax
to local height minima. But such a direct link fails for
the Das Sarma—-Tamborenea model (i.e., the 1+ model of
Ref. [18]), which has only lateral and downward hops,
making A > 0 whereas v; is thought to be vanishingly
small [34] (even though an extremely small but nonzero
v, cannot be ruled out in simulations [14]). One way to
conclusively determine whether v, # 0 is to measure the
surface current in a locally tilted substrate as discussed
in Ref. [35]. Such a calculation for our models has not
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FIG. 5. (a) The percentage of out of plane hops which are
downward (lateral hops are not counted) in the UD model
as a function of time and temperature [T' = 500(0), 550(*),
575(-), 600(0), 625(A), 650(+), 675K (X) from top to bot-
tom|. L = 10000 for T = 675K and L = 4000 for all other T'.
(b) The same data as Fig. 3(a) [but adding a T' = 450K (X))
run] replotted as the difference between the absolute number
of down- and up-hops (per layer). The temperature increases
from bottom to top here.

been attempted and is likely to be inconclusive due to
very strong finite size (time) effects. The UD model (in
addition to the NU model) may very well have v, > 0
and eventually may crossover to the universality class of
Eq. (1) in the L — o0o,t — oo limit. This belief that
the NU and UD models are likely to both be asymptoti-
cally described by the EW universality (i.e., v2 > 0) gets
additional support from recent work [14,35] which shows
that the Wolf-Villain model or the d2+ model of Ref. [18]
may actually belong to the EW universality class. Since
in our stochastic models we allow both singly and dou-
bly coordinated particles to hop, our model is actually
closer in spirit to the Wolf-Villain d2+ model than to
the Das Sarma—Tamborenea 1+ model. At this stage, it
is, however, appropriate to consider the asymptotic uni-
versality class of the UD model to be an open issue. We
have, however, established that the UD model is effec-
tively (as opposed to asymptotically) described by the
linear diffusion equation [Eq. (2)] or the nonlinear LDV
equation [Eq. (3) with v2 = Ag3 = 0], and the NU model
is asymptotically described by the EW equation.

We note for the sake of completeness that in the NU
model A (which in this case gives the total number of
down-hops per layer) also seems to saturate with ¢ and
T, and A(T = 675 K, t > 10) ~ 1950 hops/layer. In
terms of absolute numbers, for T = 675 K and after
t = 10% layers in the UD (NU) model, we observed
8.33 x 10° (1.96 x 10°) down-hops, 6.61 x 10® (0) up-
hops, and 95.1 x 106 (64.2 x 108) lateral hops. So while
the net number of downward hops A is only a modest
14% higher in the NU model, the presence of up-hops
in the UD model greatly augments the total number of
lateral and downward hops executed on the surface with-
out greatly upsetting the net flow of matter toward the
substrate. Given this, it is initially somewhat surprising
that the correlation length is actually smaller in the UD
model (Fig. 4). But an atom which hops down has, on
its next hop, a chance of returning to its original site
only if it can hop up. Thus an up-hopper is akin to a
random walker and after n hops will only wander ~ \/n
sites. If the down-hopper moves same /7 sites to reach a
lower terrace after n hops, the random walk for this atom
begins anew, with the distance it has already traversed
no longer reduced, for the atom can never return to the
upper terrace. After n’ more hops, the up-hopper has
wandered +/n + n’ sites, while the down-hopper has tra-
versed a greater distance, minimally \/n + Vn'. We also
note that up-hopping is dominantly a two-bond cutting
process, while both down and lateral hopping is domi-
nated by the contribution of highly mobile singly bonded
atoms on flat terraces and atop step edges: it is thus ener-
getically more likely that an atom at a step edge will hop
as opposed to the doubly bonded atom at a kink. In this
way, the Arrhenius rates naturally favor down-hopping
over up-hopping.

The last two models we consider completely sup-
press downwards hopping and should accentuate any fea-
tures of growth that lead to a diffusion-barrier induced
Schwoebel-type instability [28]. When only in-plane hops
occur (the LAT model), the width grows with exactly
the random growth exponent of 8 = 1/2 for all values
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of T [18]. In the random deposition case, i.e., T = 0
K, the particles’ inability to escape their deposition sites
produces uncorrelated growth, while here it arises from
atoms being confined to randomly chosen “terraces,”
which from the point of view of long wavelength fluctua-
tions, are equivalent to single (renormalized) sites [18].

Finally, in the ND model, constructed from the LAT
model by allowing upward hops (exclusively 2 and 3 bond
breaking processes), but no downward hops, we observe
Begs > 1/2. When the upward motion is weak, Befs
remains close to the LAT value (1/2), while stronger up-
hopping yielded slopes as large as 0.9. The ND model
clearly produces an instability (in that B.gs > 0.5, the
value for purely random growth) implying a breakdown of
dynamic scaling. Notice that B.fs peaks near T' = 600 K
(Rz = 0.45R4p), dropping off slightly as the tempera-
ture climbs to 675K (where the width exceeds the aver-
age height). But the ND simulation at high T grows an
order of magnitude fewer total layers as compared with
the other models, so the values of S.¢ s reported here may
not be the asymptotic ones, and this is the cause for the
observed decrease. We emphasme also that once 8 > 1/2
characterizes the growth dynamics, using critical expo-
nents becomes somewhat of an empty exercise.

Figure 6 summarizes results from all four of our mod-
els. Both the models with downward diffusion (UD and
NU) show Bess < 1/2 in all cases, whether accompanied
by upward hopping or not. Imposing an impassably high
barrier to downward hopping in the absence of upward
motion (LAT model), however, causes the fluctuations
to grow randomly as t'/2, independent of temperature.
Setting the barrier to downward hopping at some finite
value, therefore, could not conceivably yield an effective
exponent B.s¢ outside the bounds set by the NU and LAT
models (when up-hopping is forbidden). At T' = 600K,
we verify this claim in the NU model by imposing an ad-
ditional downward hopping barrier, E,, that ranges from
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FIG. 6. Late time exponents (8.55) versus temperature in
all models: UD (O), NU (A), ND (0), LAT (*). L = 4000
except for T = 675K (L = 10000). An average over 3-10
runs has been performed. The small boxes show Bess in the
UD model when E, = 0.003,0.015,0.036,0.12, and 0.24eV
(from bottom to top) for T = 600K (offset for clarity); the
small triangles represent the same data for the NU model.

0.003 eV to 0.24eV: if the atom cannot overcome the ex-
tra barrier then it does not move. The resulting values
of Beys are displayed as small triangles in Fig. 6. Note
that a 3 meV. barrier has a small, measurable effect and
E, = 0.036 eV ylelds a slope exceeding that of the cor-
responding S, f +: when up-hopping does not occur, Befys
does in fact remains less than 1/2.

When upward mobility is allowed, the possibility of
unstable growth emerges as the two limiting cases (the
UD and ND models) straddle the B.ss = 1/2 borderline
that defines purely random growth, and separates those
exponents in principle consistent with an equation such
as Eq. (3) from those with no possible dynamic scaling
(Begs > 1/ 2). Any real growing interface should thus
possess an effective exponent less than that of the ND
model: for actual surfaces to behave similar to the ND
model would require both a sufficiently large energy bar-
rier to downward hopping (measured Schwoebel barriers
are typically ~ 100K), with no barrier to upward diffu-
sion other than the bonding energy. To gauge the effect of
a diffusion barrier, we vary E, from 0.003—-0.24 eV (again
at T = 600 K), upsetting the microscopic balance created
by the up-down symmetry when E, = 0. Within the UD
model, B.ss shows a great sensitivity to impeded down-
ward motion (small boxes in Fig. 6): when the barrier
is as small as E, = 0.015eV (~ 175K), or the probabil-
ity of down-hopping is 75%, B.ss rises to 0.46, a change
induced by a modest 16% drop in A. Instability, there-
fore, can set in, and to see such behavior we had to force
the downward hopping to be more difficult than upward
hopping for equivalently coordinated atoms. And from
Fig. 6, we clearly see the necessity of upward mobility
for such an effect, as in no case did the NU model pro-
duce Bess > 1/2. Thus an observation of Bepy > 1/2
in an experiment would seemingly simultaneously sug-
gest the presence of both a’Schwoebel-type barrier and
upward mobility on the surface. In the absence of any
accurate knowledge about the Schwoebel barrier in real
semiconductor systems, and given the volatile nature of
these models with E, and the role of upward mobility,
we cannot really say much more at the present time.

It seems then that one cannot obtain 3.;¢ greater than
1/2 when E, = 0; upward hopping alone is not suffi-
cient to produce an instability. The presence of upward
hopping, while drastically increasing the total hopping
events, had a much smaller effect on the net diffusional
flux toward the substrate. If up- and down-hopping was
ignored altogether, the exponent ,Bg‘f 7 = 0.5 for all tem-
peratures. The only way we to achieve 8.5 > 1/2 within
our schemes was to make down hopping more difficult
than up-hopping (E, # 0). At T = 600K this occurred
for E, > 0.015€V (a factor of ~ 2 or so larger than exper-
imentally observed barriers), and happens at all T for a
high enough barrier. We, therefore, speculate that within
conserved SOS models not possessing a diffusion barrier,
MBE growth is generically stable. Of course, this sup-
posed generic MBE growth stability does not rule out un-
stable growth for a particular material at temperatures
where material-dependent parameters cause sufficiently
large diffusion barriers which can lead to an instability.
In general, we believe Eq. (3) to hold under SOS growth
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conditions. For thin films at lower temperatures, the con-
tinuously changing B.sy, together with a transient whose
effective slope continuously changes and a material de-
pendent diffusion barrier, makes an unambiguous deter-
mination of the universality class in MBE very difficult,
and may in fact be a source of disagreement in the exper-
imentally measured fB.s5 [24,25,27,36] and a.zs [26,27].

We emphasize that our simulations are in two dimen-
sions while most real growth measures the d = 3 scal-
ing properties. All of the experiments with G.5f < 0.5
estimate effective exponents in the range § ~ 0.2-0.3,
overlapping the range of exponents predicted for various
special cases of Eq. (3): from 0.167 ()43 term exists) to
0.25 (if v4 term is relevant). Given the numerical simi-
larity of 3 in these cases, one must be very careful about
the nature of any transients and finite size effects that
could affect the measured values of the effective expo-
nents. Our results in the simpler d = 2 case reflects neg-
atively on the hope that real growth will in fact possess
unique, temperature and material independent dynam-
ical scaling behavior consistent with the solid-on-solid
approximation, except in the high-T' limit, where EW
universality, in all likelihood, is operative. And since in
d = 3 more hopping modes exist due to the higher co-
ordination of atoms, transient behavior should actually
become even more of a problem for real growth than it is
here in our (1 + 1)-dimensional simulations. Indeed, the
determination of a single universality class for growth
of a particular crystal seems to hold many parameter-
dependent complications which at present are hard to
quantify with any generality. One should note that for
d = 3 models, the asymptotically expected EW univer-
sality enters as a very weak (logarithmic) divergence of
the width in time. Operationally, it will be difficult to
differentiate true logarithmic scaling from amongst the
influences of finite size effects and decreases in slope due
to transients when diffusion is important: monitoring the
surface gradient with time is a useful tool to help sort out
the asymptotic scaling from these extraneous affects.

To summarize our results we find the following.

(i) Uncorrelated random growth (8 = 1/2) in the LAT
model where interlayer hopping (either up or down) is
prohibited.

(ii) Unstable growth with 8 > 1/2 for the ND model
where up-hopping, but no down-hopping, is allowed. Un-
stable growth is also found in the simultaneous presence
of a finite diffusion barrier (E, # 0) and up-hopping even
if down-hopping (reduced by the diffusion barrier) is al-
lowed.

(iii) Most likely EW asymptotic growth in the NU
model where down-hopping, but no up-hopping occurs
(this conclusion is indirect, however).

(iv) Anomalous dynamic scaling [14,15] with global
Bess =~ 0.35, z = 4.7-3.4 in the UD model where detailed
balance is explicitly obeyed with both up- and down-
hopping allowed in the simulation. Based on indirect
evidence relating the UD model to the d2+, Wolf-Villain
model, we believe that for very high T, a crossover to
Eq. (1) [i-e., ¥2 # 0 in Eq. (3)] may occur in this model
though the issue is by no means settled.

For long intermediate time regime, in temperature

ranges of different extent, our UD and NU models seem to
have the global exponents given by the linear fourth-order
surface diffusion equation [Eq. (2)] with some hints (more
so in the UD model) of the nonlinear LDV term show-
ing up. We believe that understanding the true dynam-
ical critical behavior of MBE growth remains intimately
tied to our first understanding the simple Das Sarma-
Tamborenea [3] discrete dynamical growth model, which
still eludes a continuum renormalization group explana-
tion [12,14,15,22,34,35].

We conclude by emphasizing that the results of our nu-
merical simulation as presented in this paper bring out
one particularly difficult aspect of studying MBE growth
dynamics as a scale-invariant kinetic surface roughen-
ing phenomenon, namely, that MBE growth dynamics is
dominated by several diffusion length scales (or, equiva-
lently, several hopping time scales) which strongly affect
the crossover behavior of the growth dynamics. As a
function of temperature these crossover scales (i.e., the
diffusion lengths or hopping rates) vary exponentially,
and therefore, at best, MBE growth dynamics may sat-
isfy the requirement of scale invariance only in narrow
material-dependent temperature windows where various
finite size (and time) effects are minimized. It is, in fact,
possible that one does not satisfy the scale invariance
requirement for MBE growth except at the lowest tem-
perature where the deposition process is more likely to
be ballistic [30] and the SOS consideration of this pa-
per simply do not apply. We believe that this compli-
cated crossover and finite size effect is the reason be-
hind different MBE growth experiments giving widely
different dynamical growth exponents as different groups
study different crossover behavior. In summary, we be-
lieve that our results show that it is very difficult to
draw firm conclusions about dynamical growth exponents
based on studies of MBE growth dynamics—because of
crossover and transient effects fundamentally inherent
in the problem the dynamical evolution of surface mor-
phology in MBE growth may necessarily be somewhat
murky and not follow the scale invariant surface roughen-
ing paradigm in any straightforward way. Certainly, the
scale invariant properties of the surface are not universal
for all ratios of deposition to hopping strength. Indeed,
we have shown that the detailed energetics of surface dy-
namics may give rise to smoothly varying effective “expo-
nents.” Currently existing experimental results are con-
sistent with this somewhat disappointing scenario. Re-
gardless of the universal scaling issues, however, we have
shown that an observation of Bcss > 1/2 generally indi-
cates the presence of upward atomic mobility acting in
concert with a diffusional barrier to downward motion. In
addition we have argued that most MBE growth dynam-
ics is describable by a continuum equation of the type of
Eq. (3) with the magnitude of v, being very small some-
times (effectively zero) provided SOS restrictions apply
and diffusion barrier effects are not severe.

This work is supported by the US-ONR and the NSF-
MRG (DMR). We thank S. V. Ghaisas, J. M. Kim, and
P. 1. Tamborenea for helpful discussions.



50 NONEQUILIBRIUM INFLUENCE OF UPWARD ATOMIC... 223

(1] F. Family and T. Viscek, J. Phys. A 18, L75 (1985).

[2] S.F.Edwards and D. R. Wilkinson, Proc. R. Soc. London
Ser. A 381, 17 (1982).

(3] S. DasSarma and P. I. Tamborenea, Phys. Rev. Lett. 66,
325 (1991).

[4] P. I. Tamborenea and S. DasSarma, Phys. Rev. E 48,
2575 (1993).

[5] Z. W. Lai and S. DasSarma, Phys. Rev. Lett. 66, 2348
(1991).

[6] D. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

(7] J. Villain, J. Phys (France) I 1, 19 (1991).

[8] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[9] F. Family, J. Phys. A 19, L441 (1986).

[10] P. Meakin and R. Jullien, J. Phys. (Paris) 48, 1651
(1987).

[11] Dynamics of Fractal Surfaces, edited by F. Family and
T. Vicsek (World Scientific, Singapore, 1991); references
therein.

[12] M. Siegert and M. Plischke, Phys. Rev. Lett. 68, 2035
(1992).

[13] We refer to models without any temperature and with in-
stantaneous relaxation rules as dynamical models in this
paper to distinguish them from temperature-activated re-
alistic thermal diffusion growth models which we refer to
as stochastic models.

[14] M. Plischke et al., Phys. Rev. Lett. 71, 2509 (1993); S.
DasSarma and S. V. Ghaisas, ibid 71, 2510 (1993).

[15] S. DasSarma, S. V. Ghaisas, and J. M. Kim, Phys. Rev.
E 49, 122 (1994); M. Schroeder et al., Europhys. Lett.
24, 563 (1993).

[16] W. W. Mullins, J. Appl. Phys. 28, 333 (1957); 30, 77
(1959); C. Herring, in The Physics of Powder Metal-
lurgy, edited by W. E. Kingston (McGraw-Hill, New
York, 1951).

[17] D. Wilby, D. D. Vvedensky, and A. Zangwill, Phys. Rev.
B 46, 12896 (1992).

[18] S. DasSarma and S. V. Ghaisas, Phys. Rev. Lett. 69,
3762 (1992).

[19] H. Leschhorn and L. H. Tang, Phys. Rev. Lett. 70, 2973
(1993).

[20] J. Amar, P. M. Lam, and F. Family, Phys. Rev. E 47,
3242 (1993).

[21] J. M. Kim and S. Das Sarma, Phys. Rev. Lett. 72, 2903
(1994); J. Krug, Phys. Rev. Lett. 73, 2907 (1993).

[22] S. DasSarma, Fractals 1, 784 (1993).

[23] We emphasize that in addition to the characteristic
lengths associated with the lattice constant (= 1 in
our units), the substrate lateral size (L) and the dy-
namic correlation length, £.57(t) ~ t'/%<ff where z.55 =
Qeff/Bess, which are always present in any kinetic sur-
face roughening problem, we have an additional impor-
tant length scale, the diffusion length (1), in our stochas-
tic MBE growth simulations. This length, which is a com-
plicated function of the deposition rate, defines the aver-

age effective length an atom diffuses on the surface before
incorporation into the growing film. [See, for example,
S. V. Ghaisas and S. DasSarma, Phys. Rev. B 46 7308
(1992), for a calculation of l.| Finite size effects in our
work occur when I ~ L as well as when £.55 ~ L. [See, for
example, S. Das Sarma, Z. W. Lai, and P. I. Tamborenea,
Surf. Sci. Lett. 268, L311 (1992).] Because ! is an expo-
nentially strong function of T', finite size corrections are
rather severe in MBE growth simulations at higher tem-
peratures. Note that equivalent to the new length scale I,
one has new time scales 1/R,(T) in the problem which
compete with the basic 1/Rg4ep time scale causing severe
finite size and crossover effects.

[24] M. A. Cotta, R. A. Hamm, T. W. Staley, S. N: G. Chu,
R. L. Harriott, M. B. Parish, and H. Temkin, Phys. Rev.
Lett. 70, 4106 (1993).

[25] D. J. Eaglesham and G. H. Gilmer, in Surface Disorder-
ing: Growth, Roughening and Phase Transitions, edited
by R. Jullien et al. (Nova, New York, 1992), p. 69.

[26] Y. N. Yang, Y. S. Luo, and J. H. Weaver, Phys. Rev. B
45, 13803 (1992).

[27] Y. L. He, H. N. Yang, T. M. Lu, and G. C. Wang, Phys.
Rev. Lett. 69, 3770 (1992).

(28] R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37,
3682 (1966); R. L. Schwoebel, ibid. 40, 614 (1969).

[29] See, for example, D. D. Vvedensky et al., Phys. Rev. E
48, 852 (1993) for a formal discussion of this point.

[30] S. DasSarma, C. J. Lanczycki, S. V. Ghaisas, and J. M.
Kim, Phys. Rev. B 49, 10693 (1994); J. G. Zabolitzky
and D. Stauffer, Phys. Rev. A 34, 1523 (1986).

[31] D. Kessler, H. Levine, and L. Sander, Phys. Rev. Lett.
69, 100 (1992).

[32] I. K. Marmorkos and S. Das Sarma, Phys. Rev. B 45,
11262 (1992), and references therein.

[33] Note that when we refer to « in this context, we mean
that value of a extracted from a global property of the
surface, such as the width, using the standard scaling
form of Ref. [1].

[34] It may be appropriate to point out here that the
DasSarma-Tamborenea (DT) and the Wolf-Villain
(WV) models introduced in Refs. [3] and [6], respectively,
are actually distinct models as emphasized by Das Sarma
and Ghaisas in Ref. [18]. This important point has not
been appreciated in much of the recent literature which
lumps these two models together. A consensus seems
to be developing that the WV models are asymptoti-
cally described by the EW universality whereas the na-
ture of the dynamic scaling in the DT model and its
universality class has remained elusive so far. See Refs.
[14,15,21,22,35] for more details on this point.

[35] J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett.
70, 3271 (1993).

[36] J. Chevrier, V. L. Tranh, and J. Derrien, Europhys. Lett.
16, 737 (1991).



